CODEVS 1098 均分纸牌

题目描述 Description

 

有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。

例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。

输入描述 Input Description

第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)

输出描述 Output Description

输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘

样例输入 Sample Input

4
9 8 17 6

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

e

#include<numeric>
#include<iostream>
using namespace std;
int main() {
int n, t, ans, i(0), a[100];
cin >> n;
while (cin >> a[i++]);	   
int ave(accumulate(a, a + n, 0) / n); 
for (i = t = ans = 0; i < n; t += a[i++] - ave) if (t) ++ans;
cout << ans << endl;
return 0;
}

 

此条目发表在未分类分类目录。将固定链接加入收藏夹。