COGS1117 [WC2010模拟] 奶牛排队

题目描述:
像每个人一样,奶牛们喜欢在排队等待领取食物和自己的朋友站在一起。FJ拥有N头奶牛,编号为1至N。它们站成一行,等待FJ派送奶牛营养餐。这些奶牛按照编号大小排列,并且由于它们都很想早点吃饭,于是就很可能出现多头奶牛挤在同一位置的情况(也就是说,如果我们认为奶牛位于数轴上,那么多头奶牛的位置坐标可能相同)。
某些奶牛之间互相喜欢,它们希望互相之间的距离至多为一个定值。某些奶牛之间互相厌恶,它们希望互相之间的距离至少为一个定值。现在给定ML个互相喜爱的奶牛对以及它们之间距离的最大值,MD个互相厌恶的奶牛对以及它们之间距离的最小值。
你的任务是计算在满足以上条件的前提下,编号为1和编号为N的奶牛之间距离的最大可能值。
输入描述:
输入文件第一行三个整数N,ML以及MD。
此后ML行,每行包含三个用空格分开的整数A,B和D,其中A,B满足1<=A。表示编号为A和B的奶牛之间的距离至多为D。
此后MD行,每行包含三个用空格分开的整数A,B和D,其中A,B满足1<=A。表示编号为A和B的奶牛之间的距离至少为D。
输出描述:
输出文件仅包含一个整数。如果不存在任何合法的排队方式,就输出-1。如果编号1和编号N的奶牛间距离可以任意,就输出-2 。否则输出它们之间的最大可能距离。
输入样例:
4 2 1
1 3 10
2 4 20
2 3 3
输出样例:
27
数据约定:
N<=1000;
ML,MN<=10000;
D<=1000000。

差分约束。。。。。
add(read(),read(),read());会挂。。。。。可怕。。。。

#include<cstdio>
#include<queue>
#include<cstring>
#define N 1010
#define M 20010
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for4(i,x) for(int i=head[x];i;i=e[i].next)
using namespace std;
int n,ml,md,tot,head[N],dis[N];
bool v[N],flag;
struct edge{int go,next,w;}e[M]; 
void add1(){
	int x,y,w;
	scanf("%d%d%d",&x,&y,&w);
	e[++tot]=(edge){y,head[x],w};head[x]=tot;
}
void add2(){
	int x,y,w;
	scanf("%d%d%d",&x,&y,&w);
	e[++tot]=(edge){x,head[y],-w};head[y]=tot;
}
void spfa(int p){
	if(v[p]){flag=1;return;}
	v[p]=1;
	for4(i,p){
		int w=e[i].w,y=e[i].go;
		if(dis[p]+w<dis[y]){
			dis[y]=dis[p]+w;
			spfa(y);
			if(flag)return;
		}
	}
	v[p]=0;
}
int main(){
	freopen("layout.in","r",stdin);
	freopen("layout.out","w",stdout);
	scanf("%d%d%d",&n,&ml,&md);
	for1(i,ml)add1();
	for1(i,md)add2();
		memset(dis,0x7f,sizeof(dis));
		memset(v,0,sizeof(v));
		dis[1]=0;
		spfa(1);
		if(flag){printf("-1");return 0;}
	if(dis[n]==0x7f7f7f7f)printf("-2");
	else printf("%d",dis[n]);
	
}

 

此条目发表在COGS, 差分约束分类目录。将固定链接加入收藏夹。